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Abstract. The linear instability of G6rtler vortices in compressible boundary layers is considered. Using asymptotic 
methods in the high-wavenumber regime, it is shown that a growth-rate estimate can be found by solving a 
sequence of linear equations. The growth rate obtained in this way takes non-parallel effects into account and can 
be found much more easily than by ordinary differential equation eigenvalue calculations associated with 
parallel-flow theories. 

1. Introduct ion 

Our concern is with the linear growth of Taylor-G6rtler  vortices in compressible boundary 
layers. We develop a simple method for generating curves of  constant amplification rates in 
the high-wavenumber regime. 

The growth of Taylor-G6rtler vortices in incompressible boundary layers has received a 
lot of attention in recent years due to its relevance to Laminar Flow Control (see for example 
Harvey and Pride [1]). The original calculation by G6rtler [2] showed that Taylor's [3] 
instability mechanism which occurs for curved flows also operates in boundary-layer flows. 
However, the relative complexity of the basic state for a boundary-layer flow makes it a 
much more difficult task to examine the instability of  this state theoretically. Thus, the 
essential difficulty with the linear instability problem is that the growth of the boundary layer 
cannot in general be ignored and the appropriate linear instability equations are therefore 
partial differential equations. 

The original calculation by G6rtler ignored the effect of boundary-layer growth com- 
pletely and his numerical results were later corrected by Hammerlin [4] who found that 
instability occurs first at zero wavenumber. Later calculations by Hammerlin [5] and Smith 
[6] attempted to remedy this deficiency by including higher-order curvature terms or terms 
associated with the nonparallel nature of the basic state. Further work by Herbert [7] for 
example was aimed at understanding why the various linear theories did not give consistent 
results. 

Floryan and Saric [8] gave a multiple-scale approach to the linear G6rtler instability 
problem along the lines of, for example, the work of Gaster [9] or Saric and Nayfeh [10] 
for Tollmien-Schlichting waves. Thus, Floryan and Saric derived the partial differential 
equations governing the growth of G6rtler vortices. These equations had been given in a 
more general context some years earlier by Gregory, Stuart and Walker [11] who discussed 
the instability of three-dimensional boundary layers. The equations can also be inferred 
from, the work of Smith [6]. The solution given by Floryan and Saric [8] followed the 
approach of previous investigations and implicity made a parallel-flow approximation. By 
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the latter phrase we mean that some intrinsic property of the,nonparallel nature of the basic 
state was ignored in solving the disturbance equations. In fact, the above authors replace 
streamwise partial derivatives of the vortex by local spatial growth rates thus reducing the 
system to a set of  ordinary differential equations. It is not clear how such an approach can 
be justified but when the growth rate vanishes the solution can be interpreted as a local 
Taylor-series solution of  the full partial differential equations. The relevance of  the solution 
elsewhere is not immediately apparent. 

More recently, Hall [12, 13] has shown how asymptotic and numerical methods can be 
used to take non-parallel effects into account in a self-consistent manner. In the first paper, 
it was shown that small-wavelength Grrt ler  vortices at high Grrtler numbers can be 
described asymptotically using a multiple-scale method. Hall found that the vortices locate 
themselves so as to maximize their local spatial growth rate. This requires that the vortices 
are concentrated in a viscous layer in the interior of  the flow. The first investigation of  the 
large-wavenumber limit approximation in the Taylor vortex problem was given by Meksyn [14]. 

In the linear regime, Hall [13] solved numerically the full partial differential instability 
equations at O(1) wavenumbers. The linear equations were found to be parabolic in the 
streamwise direction so that an initial disturbance was imposed at some location and its 
development followed as the equations were marched downstream. The growth of the 
disturbance was followed by calculating the local rate of change of a disturbance energy 
density. The neutral position was defined to be the location where this local growth rate 
vanished. Not surprisingly, it was found that this position was a function of the location and 
form of the initial disturbance. Thus it was concluded that there exists no unique neutral 
curve for the Grrt ler  problem. However, at high wavenumbers, the different neutral curves 
merge into the asymptotic and parallel-flow neutral curves. The same would be true for the 
different possible growth-rate curves. 

Thus, in the only regime where analytical progress is possible, the growth rate can be 
written down in asymptotic form and no numerical eigenvalue calculations are required. It 
is this idea which we will now apply to compressible boundary layers to show how growth 
rates for these flows can be simply calculated. 

Previous calculations of the compressible Grrtler problem have used the parallel-flow 
assumption to reduce the instability problem to an eigenvalue problem associated with an 
eigth-order differential system. (See for example Aihara [15], Kobayashi and Kohama [16] 
or EI-Hady and Verma [17].) In particular, E1-Hady and Verma formulated the linear 
stability problem along the lines of Floryan and Saric [8] and gave curves of constant growth 
rate for various flow conditions. We show how these curves can be generated much more 
simply in the only regime where they are meaningful. The method we use is based on the 
asymptotic theory of Hall [12] for the incompressible problem. The method can be easily 
used for any flow configuration and needs little computational power. The method is based 
on the assumption that the vortex wavelength is small compared to the boundary-layer 
thickness. The range of validity of the methods can only be checked by a numerical solution 
of  the full partial differential system governing the growth of  vortices in growing compres- 
sible boundary layers. However, in general the high-wavenumber regime is ultimately always 
applicable to any constant-wavelength disturbance vortex developing in a growing boundary 
layer and so is therefore always physically relevant. 

The procedure adopted in the rest of  this paper is as follows: in Section 2, we formulate 
the partial differential system governing small Grrtler vortex disturbances in compressible 
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boundary layers. In Section 3, we solve these equations for large wavenumbers and deter- 
mine the spatial growth rates of  the disturbances. Finally, in Section 4 we present our results 
and draw some conclusions. 

2. Formulation of the instability equations 

Apart from some minor differences, our formulation is essentially the same as that of 
EI-Hady and Verma [17] and so the reader is referred to that paper for more details. We 
choose L to be a typical streamwise length scale and take Voo, Uoo, Q~, T~, #oo to be the scales 
for the kinematic viscosity, velocity, density, temperature, and coefficient of viscosity 
respectively. If  the curvature of the wall at the streamwise location x* is A-~x(x*/L), we 
define the curvature parameter 5 by 

L 
a .4' (2.1) 

and a Reynolds number R by 

U~L 
R - - - ,  (2.2) 

Vm 

and consider the limit R --* ~ with the G6rtler number 

G = 2R1/26 (2.3)! 

held fixed. The free-stream Mach number M~ is defined by 

Moo - (2.4) x/cp roo 

where cp, c,~ and ~ are the specific heats and gas constant respectively. We define (x, y, z) 
to be dimensionless variables in the streamwise, normal and spanwise directions scaled on 
L, R-~/2L, and R-1aL, respectively. We shall assume that the vortices grow spatially in the 
x direction and therefore we consider them to be steady. 

Now we consider the limit R --* oe with G and Mo~ held fixed. The fluid is assumed to 
satisfy the ideal-gas law whilst viscosity is taken to be a function of  temperature. In a layer 
of depth R-1/2 the basic state is 

(u ,v ,w)  = U~o(fi(x,y), R-'/26(x, y), O) + . . . ,  

r = T~T'(x,y), /z -- /z~/f(x,y), 

0 = QooO(x,y), p = QoouZp(x )+ . . .  
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where 

(2.5a) 

(SaL + (~o), = 0, (2.5b) 

1 0 
O[c,g + oL] = 

r o  
- - -  - 1)Moo #uy ,, (2.5c) 

= Tw, fi = O = 0 at y = 0, (2.5d) 

together with conditions on 7 ~ and fi as )5 ~ ~ .  Here F is the Prandtl  number  whilst Tw is 
the wall temperature.  

We now perturb (2.5) to a disturbance periodic in the z direction. The velocity components  
o f  the disturbance and temperature are scaled in an identical manner  to the corresponding 
basic state quantities. The linearized instability equations obtained by neglecting terms of  
relative order R-i/2 are formed to be 

P r,~v P (aU)~ + f~aZU + p OUy (~Uy), + 
T T 

I / ~  (fifix + + (Pfiy)yl T - = 0, (2.6a) 
-] 

Oily) 7,a~ T~ - -~ 
J 

f i  
(Ox + rf iG)U - c~yUx - (c + 1)~Uxy - [txUy 

T 

x T -  ~ftyT~ -- [c~fix + (c +2)~OylTy - c ~ y i a W -  (c + 1)ia/fWy = 

~xiaU + (c + 1)fiiaU x + ~yiaV + (c + 1)/~iaVy - iae  + c/~(fi x + Oy)iaT 

O 
TPW~ -- (c + 2) /u~W -- -~pWy + (/SWy)y = 0, 

+ P (~v)~ + P ~ -~ V~ + ~ a Z V -  (c + 2)(~Vy)y + Py 

[ P  ( f iOx+ r + l/2xGft2) + (c + 1)~ftxy + C~yfi~ + (c + 2)(ktOy)y + ~xfiy] - -~ 

O, (2.6b) 

+ - T  + i a  - k - U L - k - U -  L o, 

(2.6c) 

(2.6d) 
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P (/gL + ~ L )  "~- (~ 2 ~-2 1 1 

P # a E T + ( ~ f )  1 ~Ty) T e -  1 = 0. (2.6e) 

Here U, V, W, P, T denote disturbed velocity components, pressure, and temperature whilst 
/~ = d/~/d~P and a is the spanwise wavenumber. We note that the above equations can be 
simplified i fp  is independent of  x; in that case, we can set p = 1 in which case (2.6) reduce 
to the equations of  EI-Hady and Verma [17]. The Grrt ler  number G is defined by (2.3), 
c = ~//~ where ~[ is the bulk viscosity. Equations (2.6) are to be solved subject to the 
perturbation quantities vanishing at y = 0, ~ .  The disturbance equations (2.6 a-e) depend 
on x through the centrifugal terms proportonal to G, for simplicity we now restrict our 
attention to the case of  constant curvature so that x = 1. 

3. The high-wavenumber solution for Moo ~ O(1) 

It is known from the work of  Hall [12, 13] that small-wavelength G6rtler vortices are located 
in the boundary layer so as to maximize their local spatial amplification rate. For the 
incompressible case and zero amplification rate, this position corresponds to where 
Rayleigh's criterion is most violated. The depth of  this layer is O(a -I/2) so we define q by 

q = {y -- p(x)}a l/z, (3.1) 

where )~(x) is the as yet undetermined location of  the layer. The stream-wise disturbance 
velocity in this layer expands as 

U = 

where 

[U0(r/, x ) .q.- a - l / 2 U l ( r l ,  x )  + . . . ] exp {a2 fXtr(x) dx} 

= flo(X) q- a - l f l l ( x )  q- . . . .  

Similar expansions hold for Va -2, Wa -3/2, Pa -s/2, and T whilst ~ expands as 

II = (lo(X) + ~llrla -I/2 a t- . . . .  

Again, similar expansions for 2~, ~ and/~ hold. The details of  the expansion procedure are 
essentially identical to those of  Hall [12] so we shall omit a lot of  detail here. The G6rtler 
number G expands as 

G = go a4. (3.2) 
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Fig. I. Curves o f  constant  growth a in G6rtler number  vs. wavenumber  plane for M = 2. 

It is convenient to define the matrix A by 

A(x, y) 

fio flo ~ + - -  

go fio 

0 

1"o 

aoPo ~ + - -  

1"o 

0 

- -  go fi~ 

+ aoPo 
r To 

(3.3) 

In equations (3.3) and subsequently,/3 has been set to unity since, for the asymptotic 
solution, pressure may be rescaled by local edge pressure. If the above expressions are 
substituted into the disturbance equations and like powers are equated, we obtain the system 
of equations 

a(x, )) Vo 

r0 

= 0, (3.4) 
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Fig. 2. Same as Fig. 1 except  for M = 4. 

at zeroth order. The functions Wo and P0 can be expressed in terms of  Uo, Vo. The next two 
order systems yield 

A(x, #) v, 

1"1 

and 

t - ~  ~ ( x , # )  Vo 

To 

(3.5a) 

A(x, 5:) V~ = rl2C(x, y,) + E Vo, . . + fl~r V o . (3.5b) 

T2 Wo,~ ) To 

The coefficient matrices C, E, and F can be written down in terms of quantities involving 
basic flow quantities. The system (3.4) has a nontrivial solution if 

IAI = o, (3.6) 

which for a given choice of  go and # determines three possible spatial amplification rates #o. 
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The first-order solution can then be written as 

{i} = V o ( ~ , x )  

1 

-~o(oo~o ) 
%-7- -~o +~~ 

(~flo + ;,o) = Uoa. (3.7)' 

The system 

W~Uo § = 0 

will then have a solution and will be needed at higher order. Here, 

ug 

f 1)  _(~  
\ ~ro + ~o fiogo 

- ~ o \  ~r ~ 

At this stage )~(x) and U0(q, x) remain undetermined but at next order we find that (3.5) 
has a solution only if 

OA 
(u~')rR -w- (x, .~)a = 0 (3.8) 

oy 

and this fixes the location )~(x). Physically (3.8) can be interpreted as the condition that flo 
has a maximum at the layer y -- _~. The solution of  (3.8) can then be written in the form 

= ,TUo 

7"1 

where (ct, fl) satisfies 

~ ct + + /~ = O, - -  ~ - ~ - . a ,  

~o ro / ~ ~o' to ~ 

/~l ~t flo ~o--(-~o( ~ ~ O,~l o). 
(3.9) 



The growth of G6rtler vortices 247 

10s - -  
8 
6 
q 

2 

10 a 
8 
6 

2 

10' 
8 
6 

q 

2 

10~ 

tt 

2 

10-1 
10-1 

r=lO 

i , J i I , l ~ ~ I 

2 tt S 8 10 ~ 2 t~ 6 8 101 

a 

Fig. 3. Same as Fig. 1 except for M = 6. 

Here 

~(~) 7~(y) 
u~-  n! ' 7 ~ -  n--~ - - ' e tc"  

Finally, U0 is determined when the required solvability condit ion is applied to (3.6); this 
yields 

~Uot/r/ + ~)~2U0 ~- /~fll U0 = 0. (3.10) 

Here e, y, and 3. are defined by 

e = (u0+)rREa, 7 = (u0+) rRca ,  2 = (Uo+)rRFa (3.11a,b,c) 

and depend on x. The coefficient matrices E, C and F a r e  given in Appendix A. The solutions 
o f  (3.10) which decay to zero when 171 ~ ~ can be written down in terms of  parabolic 
cylinder functions, the most  unstable one is 

Uo = exp - ~- (3.12) 
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Fig. 4. Effect  o f  c o m p r e s s i b i l i t y  o n  n e u t r a l  (tr = 0) cu rves .  

and the corresponding eigenrelation is 

= (3.13) 

If  we were interested in finding the neutral G6rtler number, we would have included 
higher-order terms in (3.2) and set/7o = fl~ = 0. In that case, (3.13) would be replaced by 
an equation to find g~, the order a 3 term in the expansion of  the neutral G6rtler number. 

We now summarize the steps required to find /7o and fl~ - the first two terms in the 
expansion of  the spatial amplification rate. Firstly, at any depth p, the cubic equation 
specified by the condition 

IAI = 0 

is solved for the three possible values offl0. The value o fp  is then varied until (3.8) is satisfied 
and then fl~ is determined by (3.13). Thus, it is not necessary to solve any differential 
equations numerically to obtain/70 and fl~. The answer we obtain is formally valid when 
a >> 1, at smaller values of  a it is at least as valid as the solution of  EI-Hady and Verma [17] 
which would require large amounts of  computer time. At progressively higher values of a, 
the different approaches will converge. At finite values of  the wavenumber a full numerical 
solution of  (2.6) along the lines of  Hall [13] is required. We now turn to the results we have 
obtained using the above approach. 
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momentum thickness (Go), wave number (a) and N factors in a Math 3.5 supersonic nozzle. 

4. Results and discussion 

In Fig. 1, we have shown curves of  equal spatial amplification rate at a Mach number of  2 
in the wavenumber vs. G6rtler-number plane. These curves correspond to the adiabatic wall 
condition being applied to the temperature. The stagnation temperature is held at 311 K. The 
results shown are formally valid at large values of a and are then the only unique amplifi- 
cation rates which exist for the G6rtler problem. In this figure the wavenumber is made 
non-dimensional by using L = ~ .  Similar curves for Mach number of 4 and 6 are 
given in Figs 2 and 3 respectively. We note that the constant-growth-rate curves extend to 
small wavenumbers for higher Mach numbers. However, the small-wavenumber region is 
perhaps beyond the range of validity of the theory. The neutral curves for all three Math  
numbers are shown in Fig. 4. These curves shift towards the left with increasing Mach 
number, indicating the stabilizing effect of  compressibility. 

Next, we perform a calculation which is of  direct engineering significance. We consider the 
boundary layer on the wall of  a supersonic nozzle (see [18]). Transition in this boundary layer 
is caused by G6rtler vortices. The flow accelerates to Mach 3.5 towards the exit of  the nozzle. 
The distribution of  the local edge Mach number, the pressure gradient parameter (fib), 
and the Gfrt ler  number based upon momentum thickness 0 are plotted in Fig. 5. The 
amplification factor (N = S x tr(x) dx) for G6rtler vortices is computed for a fixed physical 
wavelength (local nondimensional wavenumber is also plotted in the figure) using the current 
asymptotic theory and the parallel theory used in the computations of [18]. For design 
purposes, the agreement between the two approaches is fairly good, but it should be noted 
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that the parallel-theory calculations requires at least 30 times as much computer time when 
compared with the asymptotic calculations. 

Appendix A 

The non-zero elements of the coefficient matrices C, E, F (equation 3.11) are 

,o[ o~ ([~l  ~ ~)] ~[~,o, ] 
c,, = - . ~ - ~  ~= Too + ao ~ j  -Too +Too To 2~ . 

el2 1 - -3 /~  3 + 2 -::~'~o)] r,, \ \-foo : 

czl go F--u2 + /~1~1 
= g o  L W -  

~o ~:o/1 ~oO__~o o, 
-- ~ U, "~ ~00 /all To : 3  "q- f 2  To : '  

c~ = - . 2 - ~  ~2 # +~o t \go / -Too  . 

~:oyl C23 ----g0 [2U0 {U 2~'-~02 /~I ~iFl~ "l- /d0 Lk "~0 : F (  ~'I ~2- TT-~-02 ]} "-~'-(u I To :3 

(731 
Gt 
~o [=:~ - ~'~l ~oj-~[(~ ~,~o / Bo " ' f ' l ,  

~ / ~ o  r / 

%2 1 r3ip 3 37~, ip2 7~ 1 
- ~o L fo +~o~/' 

c~ [~+{[  o~ ~ + oo,,~o:::~1~o)t"O7o] 
~o 

E .  = ~o, E22 = 2~o, E33 = - -  
F '  

B - -  - -  

U0 U0 U0 
Fll = To' /722 - To' F33 = To" 
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